Understanding People Lifestyles: Construction of Urban Movement Knowledge Graph from GPS Trajectory
نویسندگان
چکیده
Technologies are increasingly taking advantage of the explosion in the amount of data generated by social multimedia (e.g., web searches, ad targeting, and urban computing). In this paper, we propose a multi-view learning framework for presenting the construction of a new urban movement knowledge graph, which could greatly facilitate the research domains mentioned above. In particular, by viewing GPS trajectory data from temporal, spatial, and spatiotemporal points of view, we construct a knowledge graph of which nodes and edges are their locations and relations, respectively. On the knowledge graph, both nodes and edges are represented in latent semantic space. We verify its utility by subsequently applying the knowledge graph to predict the extent of user attention (high or low) paid to different locations in a city. Experimental evaluations and analysis of a real-world dataset show significant improvements in comparison to state-of-the-art methods.
منابع مشابه
Semantic Trajectory Compression
In the light of rapidly growing repositories capturing the movement trajectories of people in spacetime, the need for trajectory compression becomes obvious. This paper argues for semantic trajectory compression (STC) as a means of substantially compressing the movement trajectories in an urban environment with acceptable information loss. STC exploits that human urban movement and its large–sc...
متن کاملSemantic trajectory compression: Representing urban movement in a nutshell
There is an increasing number of rapidly growing repositories capturing the movement of people in spacetime. Movement trajectory compression becomes an obvious necessity for coping with such growing data volumes. This paper introduces Semantic Trajectory Compression (STC), which allows for substantially compressing trajectory data with acceptable information loss. STC exploits that human urban ...
متن کاملSeTraStream: Semantic-Aware Trajectory Construction over Streaming Movement Data
Location data generated from GPS equipped moving objects are typically collected as streams of spatiotemporal 〈x, y, t〉 points that when put together form corresponding trajectories. Most existing studies focus on building ad-hoc querying, analysis, as well as data mining techniques on formed trajectories. As a prior step, trajectory construction is evidently necessary for mobility data process...
متن کاملSemantic Trajectories : Computing and Understanding Mobility Data
Thanks to the rapid development of mobile sensing technologies (like GPS, GSM, RFID, accelerometer, gyroscope, sound and other sensors in smartphones), the largescale capture of evolving positioning data (called mobility data or trajectories) generated by moving objects with embedded sensors has become easily feasible, both technically and economically. We have already entered a world full of t...
متن کاملVector Field k-Means: Clustering Trajectories by Fitting Multiple Vector Fields
Scientists study trajectory data to understand trends in movement patterns, such as human mobility for traffic analysis and urban planning. In this paper, we introduce a novel trajectory clustering technique whose central idea is to use vector fields to induce a notion of similarity between trajectories, letting the vector fields themselves define and represent each cluster. We present an effic...
متن کامل